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SECTION 5.  TETHER DATA
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5.1 General

This handbook would not be complete without providing the user with specific data and other
information relevant to the analysis of tether applications. To the authors' knowledge, the best summarization
of this data is contained in J. A. Carroll's Guidebook for Analysis of Tether Applications, published in 1985
under contract to the Martin Marietta Corporation. It provides a concise review of those technical areas
which are essential to tether analyses. For the uninitiated, it is the first exposure they should have to ensure
that they understand the broad implications of any application they might consider. From here, they can
explore the many references given in the Bibliography.

The Guidebook is reproduced here in full, except for its bibliography which would be redundant. J. A.
Carroll's introductory remarks and credits are presented below:

This Guidebook is intended as a tool to facilitate initial analyses of proposed
tether applications in space. The guiding philosophy is that at the beginning of
a study effort, a brief analysis of all the common problem areas is far more
useful than a detailed study in any one area. Such analyses can minimize the
waste of resources on elegant but fatally flawed concepts, and can identify the
areas where more effort is needed on concepts which do survive the initial
analyses.

In areas in which hard decisions have had to be made, the Guidebook is:

Broad, rather than deep
Simple, rather than precise
Brief, rather than comprehensive
Illustrative, rather than definitive

Hence the simplified formulas, approximations, and analytical tools included in
the Guidebook should be used only for preliminary analyses. For detailed
analyses, the references with each topic and in the bibliography may be useful.
Note that topics which are important in general but not particularly relevant to
tethered system analysis (e.g., radiation dosages) are not covered.

This Guidebook was presented by the author under subcontract RH4394049
with the Martin Marietta Corporation, as part of their contract NAS8-35499
(Phase II Study of Selected Tether Applications in Space) with the NASA
Marshall Space Flight Center. Some of the material was adapted from
references listed with the various topics, and this assisted the preparation
greatly. Much of the other material evolved or was clarified in discussions
with one or more of the following: Dave Arnold, James Arnold, Ivan Bekey,
Guiseppe Colombo, Milt Contella, Dave Criswell, Don Crouch, Andrew
Cutler, Mark Henley, Don Kessler, Harris Mayer, Jim McCoy, Bill Nobles,
Tom O'Neil, Paul Penzo, Jack Slowey, Georg von Tiesenhausen, and Bill
Thompson. The author is of course responsible for all errors, and would
appreciate being notified of any that are found.
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5.2 Generic Issues

MAJOR CONSTRAINTS IN MOMENTUM-TRANSFER APPLICATIONS

   CONSTRAINT: ORBIT TETHER TETHER TETHER
   APPLICATION; BASICS DYNAMICS PROPERTIES OPERATIONS

   All types Apside Forces on µmeteoroid Tether recoil
location end masses sensitivity at release

   Librating Tether can Facility attitude
go slack & "g"s variable

   Spinning High loads Retrieval can
on payload be difficult

   Winching High loads Extremely high
on payload power needed

   Rendezvous Orbit planes Short launch &
must match capture windows

   Multi-stage Dif. nodal Waiting time
regression between stages

   High deltaV   Gravity Control of Tether mass Retrieval energy;
   losses dynamics & lifetime Facility a alt.

MAJOR CONSTRAINTS WITH PERMANENTLY-DEPLOYED TETHERS

  CONSTRAINTS: ORBIT TETHER TETHER TETHER
 APPLICATIONS: BASICS DYNAMICS PROPERTIES OPERATIONS

   All types Aero. drag Libration Degradation, Recoil & orbit
µmeteoroids & changes after
debris impact  tether break

  Electrodynamic Misc changes Plasma High-voltage
in orbit disturbances insulation

  Aerodynamic Tether drag
& heating

  Beanstalk Tether mass; Consequences
      (Earth) debris impact of failure

  Gravity Use:
         Hanging Libration- <0.1 gee only,
         Spinning Sensitive            Docking awkward
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5.3 Orbit Equations and Data

5.3.1 Orbits and Orbital Perturbations

KEY POINTS Basic orbit nomenclature & equations are needed frequently in following pages. Comparison of
tether & rocket operations requires orbit transfer equations.

The figures and equations at right are a summary of the aspects of orbital mechanics most
relevant to tether applications analysis. For more complete and detailed treatments and
many of the derivations, consult refs. 1-3.

The first equation in the box is known as the Vis Viva formulation, and to the right of it is
the equation for the mean orbital angular rate, n. Much of the analysis of orbit transfer ∆Vs
and tether behavior follows from those two simple equations. Some analyses require a close
attention to specific angular momentum, h, so an expression for h (for compact objects) is
also given here.

In general, six parameters are needed to completely specify an orbit. Various parameter sets
can be used (e.g., 3 position coordinates & 3 velocity vectors). The six parameters listed at
right are commonly used in orbital mechanics. Note that when i=0, Ω becomes
indeterminate (and unnecessary); similarly with ω when e=0. Also, i & Ω are here
referenced to the central body's equator, as is usually done for Low Earth Orbit (LEO). For
high orbits, the ecliptic or other planes are often used. This simplifies calculation of 3rd
body effects.

NOTES The effects of small ∆Vs on near-circular orbits are shown at right. The relative effects are
shown to scale: a ∆V along the velocity vector has a maximum periodic effect 4 times
larger than that of the same, ∆V perpendicular to it (plus a secular effect in θ which the
others don't have). Effects of oblique or consecutive ∆Vs are simply the sum of the
component effects. Note that out-of-plane ∆Vs at a point other than a node also affect Ω.

For large ∆Vs, the calculations are more involved. The perigee and apogee velocities of the
transfer orbit are first calculated from the Vis Viva formulation and the constancy of h.
Then the optimum distribution of plane change between the two ∆Vs can be computed
iteratively, and the required total ∆V found. Typically about 90% of the plane change is
done at GEO.

To find how much a given in-plane tether boost reduces the required rocket ∆V, the full
calculation should be done for both the unassisted and the tether-assisted rocket. This is
necessary because the tether affects not only the perigee velocity, but also the gravity
losses and the LEO/GEO plane change split. Each m/s of tether boost typically reduces the
required rocket boost by 0.89 m/s (for hanging release) to 0.93 m/s (for widely librating
release).

Note that for large plane changes, and large radius-ratio changes even without plane
changes, 3-impulse "bi-elliptic" maneuvers may have the lowest total ∆V. Such maneuvers
involve a boost to near-escape, a small plane and/or perigee-adjusting ∆V at apogee, and an
apogee adjustment (by rocket or aerobrake) at the next perigee. In particular, this may be
the best way to return aerobraking OTVs from GEO to LEO, if adequate time is available.

REFERENCES 1. A. E. Roy, Orbital Motion, Adam Hilger Ltd., Bristol, 1978.
2. Bate, Mueller, & White, Fundamentals of Astrodynamics, Dover Pub., 1971.
3. M. H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley & Sons, 1976.
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Orbit & Orbit Transfer Equations
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5.3.2 Orbital Perturbations

KEY POINTS Differential nodal regression severely limits coplanar rendezvous windows. Apsidal recession
affects STS deboost requirements from elliptical orbits. Third bodies can change the orbit
plane of high-orbit facilities.

The geoid (earth's shape) is roughly that of a hydrostatic-equilibrium oblate ellipsoid, with a
296:297 polar:equatorial radius ratio. There are departures from this shape, but they are
much smaller than the 1:297 oblateness effect and have noticeable effects only on
geosynchronous and other resonant orbits.

The focus here is on oblateness, because it is quite large and because it has large secular
effects on Ω and ω for nearly all orbits. (Oblateness also affects n, but this can usually be
ignored in preliminary analyses.) As shown at right, satellites orbiting an oblate body are
attracted not only to its center but also towards its equator. This force component imposes
a torque on all orbits that cross the equator at an angle, and causes the direction of the
orbital angular momentum vector to regress as shown.

&Ω  is largest when i is small, but the plane change associated with a given ∆Ω varies with
sin(i). Hence the actual plane change rate varies with sin(i)cos(i), or sin(2i), and is highest
near 45°. For near-coplanar rendezvous in LEO, the required out-of-plane ∆V changes by
78sin(2i) m/s for each phasing "lap". This is independent of the altitude difference (to first
order), since phasing & differential nodal regression rates both scale with ∆a. Hence even at
best a rendezvous may require an out-of-plane ∆V of 39 m/s. At other times, out-of-plane
∆Vs of 2sin(i)sin(∆Ω/2)Vcirc   ( = up to 2 Vcirc!) are needed.

NOTES The linkage between phasing and nodal regression rates is beneficial in some cases: if an
object is boosted slightly and then allowed to decay until it passes below the boosting object,
the total ∆Ω is nearly identical for both. Hence recapture need not involve any significant
plane change.

Apsidal recession generally has a much less dominant effect on operations, since apsidal
adjustments (particularly of low-e orbits) involve much lower ∆Vs than nodal adjustments.
However, tether payload boosts may often be done from elliptical STS orbits, and perigee
drift may be an issue. For example, OMS deboost requirements from an elliptical STS orbit
are tonnes lower (and payload capability much higher) if perigee is near the landing site
latitude at the end of the mission. Perigee motion relative to day/night variations is also
important for detailed drag calculations, and for electrodynamic day-night energy storage
(where it smears out and limits the eccentricity-pumping effect of a sustained day-night
motor-generator cycle).

Just as torques occur when the central body is non-spherical, there are also torques when the
satellite is non-spherical. These affect the satellite's spin axis and cause it to precess around
the orbital plane at a rate that depends on the satellite's mass distribution and spin rate.

In high orbits, central-body perturbations become less important and 3rd-body effects more
important. In GEO, the main perturbations (~47 m/s/yr) are caused by the moon and sun.
The figure at right shows how to estimate these effects, using the 3rd body orbital plane as
the reference plane.

REFERENCES 1. A. E. Roy, Orbital Motion, Adam Hilger Ltd., Bristol, 1978.
2. Bate, Mueller, & White, Fundamentals of Astrodynamics, Dover Pub., 1971.
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5.3.3 Aerodynamic Drag

KEY POINTS Tether drag affects tether shape & orbital life; atomic oxygen degrades tethers. Out-of-plane
drag component can induce out-of-plane tether libration. The main value of payload boosting
by tether is the increased orbital life. Unboosted orbital life of space facilities is affected by
tether operations.

The figure at right shows the orbiter trolling a satellite in the atmosphere, as is planned for
the 2nd TSS mission in the late 1980s. The tether drag greatly exceeds that on the end-
masses and should be estimated accurately. The drag includes a small out-of-plane component
that can cause φ-libration.

Tether drag is experienced over a range of altitudes, over which most of the terms in the drag
equation vary: the air density ρ, the airspeed Vrel, and the tether width & angle of attack. In
free-molecular flow, CL is small, and CD (if based on A⊥) is nearly constant at 2.2. (CD rises
near grazing incidence, but then A⊥ is low.)

Only ρ varies rapidly, but it varies in a way which lends itself to simple approximations.
Empirical formulae have been developed by the author and are shown at right. They give
values that are usually within 25% of ref. 1, which is still regarded as representative for air
density as a function of altitude & exosphere temperature. These estimates hold only for
ρ>lE-14, beyond which helium & hydrogen dominate & the density scale height H increases
rapidly.

NOTES Note that over much of LEO, atomic oxygen is the dominant species. Hyperthermal impact
of atomic oxygen on exposed surfaces can cause rapid degradation, and is a problem in low-
altitude applications of organic-polymer tethers.

The space age began in 1957 at a 200-yr high in sunspot count. A new estimate of mean solar
cycle temperatures (at right, from ref. 2), is much lower than earlier estimates. Mission
planning requires both high & mean estimates for proper analysis. Ref. 2 & papers in the
same volume discuss models now in use.

If the tether length L is <<H, the total tethered system drag can be estimated from the total
A⊥ & the midpoint V & ρ. If L>>H, the top end can be neglected, the bottom calculated
normally, and the tether drag estimated from l.lρbottom * tether diameter * H * V2

rel, with H &
Vrel evaluated one H above the bottom of the tether. For L between these cases, the drag is
bounded by these cases.

As shown at right, the orbital life of more compact objects (such as might be boosted or
deboosted by tether) can be estimated analytically if Tex is known. For circular orbits with the
same r, Vrel & ρ  both vary with i, but these variations tend to compensate & can both be
ignored in first-cut calculations.

The conversion of elliptical to “equal-life” circular orbits is an empirical fit to an unpublished
parametric study done by the author. It applies when apsidal motions relative to the equator
and relative to the diurnal bulge are large over the orbital life; this usually holds in both low &
high-i orbits. For a detailed study of atmospheric drag effects, ref. 3 is still useful.

REFERENCES 1. U.S. Standard Atmosphere Supplements, 1966. ESSA/NASA/USAF, 1966.
2. K. S. W Champion, "Properties of the Mesosphere and Thermosphere and Comparison
with CIRA 72", in The Terrestrial Upper Atmosphere, Champion and Roemer, ed.; Vol 3, #1
of Advances in Space Research, Pergamon, 1983.
3. D. G. King-Hele, Theory of Satellite Orbits in an Atmosphere, Butterworths, London, 
1964.
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5.3.4 Thermal Balance

KEY POINTS Aerothermal heating of tethers is severe at low altitudes (<120 km). Tether temperature
affects strength, toughness, & electrical conductivity. Extreme thermal cycling may degrade
pultruded composite tethers. “View factors” are also used in refined micrometeoroid risk
calculations.

Preliminary heat transfer calculations in space are often far simpler than typical heat
transfer calculations on the ground, since the complications introduced by convection are
absent. However the absence of the "clamping" effect of large convective couplings to air or
liquids allows very high or low temperatures to be reached, and makes thermal design
important.

At altitudes below about 140 km in LEO, aerodynamic heating is the dominant heat input on
surfaces facing the ram direction. The heating scales with ρ as long as the mean free path λ is
much larger than the object's radius. It is about equal to the energy dissipated in stopping
incident air molecules. In denser air, shock & boundary layers develop. They shield the
surface from the incident flow and make &Q rise slower as ρ increases further. (See ref 1.)

Because tethers are narrow, they can be in free molecular flow even at 100 km, and may
experience more severe heating than the (larger) lower end masses do. Under intense heating
high temperature gradients may occur across non-metallic tethers. These gradients may cause
either overstress or stress relief on the hot side, depending on the sign of the axial thermal
expansion coefficient.

NOTES At higher altitudes the environment is much more benign, but bare metal (low-emittance)
tethers can still reach high temperatures when resistively heated or in the sun, since they
radiate heat poorly. Silica, alumina, or organic coatings >l µm thick can increase emittance
and hence reduce temperatures. The temperature of electrodynamic tethers is important
since their resistance losses (which may be the major system losses) scale roughly with Tabs.

For a good discussion of solar, albedo, and long wave radiation, see ref. 2. The solid geometry
which determines the gains from these sources is simple but subtle, and should be done
carefully. Averaged around a tether, earth view-factors change only slowly with altitude &
attitude, and are near 0.3 in LEO.

Surface property changes can be an issue in long-term applications, due to the effects of
atomic oxygen, UV & high-energy radiation, vacuum, deposition of condensable volatiles
from nearby surfaces, thermal cycling, etc. Hyperthermal atomic oxygen has received
attention only recently, and is now being studied in film, fiber, and coating degradation
experiments on the STS & LDEF.

Continued thermal cycling over a wide range (such as shown at bottom right) may degrade
composite tethers by introducing a maze of micro-cracks. Also, temperature can affect the
strength, stiffness, shape memory, and toughness of tether materials, and hence may affect
tether operations and reliability.

REFERENCES 1. R. N. Cox & L.F. Crabtree, Elements of Hypersonic Aerodynarnics, The English
Universities  Press Ltd, London, 1965. See esp. Ch 9, “Low Density Effects”
2. F. S. Johnson, ed., Satellite Environment Handbook, Second Edition, Stanford University
Press, 1965. See chapters on solar & earth thermal radiation.
3. H. C. Hottel, "Radiant Heat Transmission," Chapter 4 of W.H. McAdams, HEAT
TRANSMISSION, 3rd edition, McGraw-Hill, New York, 1954, pp. 55-125.
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5.3.5 Micrometeoroids and Debris

KEY POINTS Micrometeoroids can sever thin tethers & damage tether protection/insulation. Orbiting debris
can sever tethers of any diameter.

At the start of the space age, estimates of meteoroid fluxes varied widely. Earth was thought to
have a dust cloud around it, due to misinterpretation of data such as microphone noise caused
by thermal cycling in spacecraft. By the late 1960s most meteoroids near earth were
recognized to be in heliocentric rather than geocentric orbit. The time-averaged flux is mostly
sporadic, but meteor showers can be dominant during their occurrence.

There is a small difference between LEO and deep-space fluxes, due to the focusing effect of
the earth's gravity (which increases the velocity & flux), and the partial shielding provided by
the earth & "sensible" atmosphere. For a typical meteoroid velocity of 20 km/sec, these
effects combine to make the risk vary as shown at right in LEO, GEO, and beyond. The
picture of a metal plate after hypervelocity impact is adapted from ref. 3.

The estimated frequency of sporadic meteoroids over the range of interest for most tether
applications is shown by the straight line plot at right, which is adapted from ref. 4 & based on
ref. 1. (Ref 1 is still recommended for design purposes.) For masses <lE-6 gm (<0.15 mm diam.
at an assumed density of 0.5), the frequency is lower than an extension of that line, since
several effects clear very small objects from heliocentric orbits in geologically short times.

NOTES Over an increasing range of altitudes and particle sizes in LEO, the main impact hazard is due
not to natural meteoroids but rather to man-made objects. The plots at right, adapted from
refs 4 & 5, show the risks presented by the 5,000 or so objects tracked by NORAD radars (see
ref. 6). A steep “tail” in the 1995 distribution is predicted since it is likely that several debris-
generating impacts will have occurred in LEO before 1995. Such impacts are expected to
involve a 4-40 cm object striking one of the few hundred largest objects and generating
millions of small debris fragments.

Recent optical detection studies which have a size threshold of about 1 cm indicate a
population of about 40,000 objects in LEO. This makes it likely that debris-generating
collisions have already occurred. Studies of residue in small surface pits on the shuttle and other
objects recovered from LEO indicate that they appear to be due to titanium, aluminum, and
paint fragments (perhaps flaked off satellites by micrometeoroid hits). Recovery of the Long
Duration Exposure Facility (LDEF) later this year should improve this database greatly, and
will provide data for LEO exposure area-time products comparable to those in potential long-
duration tether applications.

REFERENCES 1. Meteoroid Environment Model—1969 [Near Earth to Lunar Surface], NASA SP-8013,
    March 1969.
2. Meteoroid Environment Model—1970 [Interplanetary and Planetary], NASA SP-8038,
    October 1970.
3. Meteoroid Damage Assessment, NASA SP-8042, May 1970. Shows impact effects.
4. D. J. Kessler, "Sources of Orbital Debris and the Projected Environment for Future
    Spacecraft", in J. of Spacecraft & Rockets, Vol 18 #4, Jul-Aug 1981.
5. D. J. Kessler, Orbital Debris Environment for Space Station, JSC-20001, 1984.
6. CLASSY Satellite Catalog Compilations. Issued monthly by NORAD/J5YS, Peterson Air
    Force Base, CO 80914.
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5.4 Tether Dynamics and Control

5.4.1 Gravity Gradient Effects

KEY POINTS “Microgee” environments are possible only in small regions (~5 m) of a LEO facility.
Milligee-level gravity is easy to get & adequate for propellant settling, etc.

The figure at right shows the reason for gravity-gradient effects. The long tank-like object is
kept aligned with the local vertical, so that the same end always faces the earth as it orbits
around it. If one climbs from the bottom to the top, the force of gravity gradually decreases
and the centrifugal force due to orbital motion increases. Those forces cancel out only at one
altitude, which is (nearly but not exactly) the altitude of the vehicle's center of mass.

At other locations an object will experience a net force vertically away from the center of
mass (or a net acceleration, if the object is allowed to fall). This net force is referred to as the
"gravity-gradient force." (But note that 1/3 of the net force is actually due to a centrifugal
force gradient!) Exact and approximate formulas for finding the force on an object are given
at right.

The force occurs whether or not a tether is present, and whether or not it is desirable. Very-
low-acceleration environments, which are needed for some types of materials processing and
perhaps for assembling massive structures, are only available over a very limited vertical
extent, as shown at right. Putting a vehicle into a slow retrograde spin can increase the
"height" of this low-gee region, but that then limits the low-gee region's other in-plane
dimension.

NOTES Since gravity gradients in low orbits around various bodies vary with µ/r3, the gradients are
independent of the size of the body, and linearly dependent on its density. Hence the gradients
are highest (.3-.4 milligee/km) around the inner planets and Earth’s moon, and 60-80% lower
around the outer planets. In higher orbits, the effect decreases rapidly (to 1.6 microgee/km in
GEO).

The relative importance of surface tension and gravity determines how liquids behave in a
tank, and is quantified with the Bond number, Bo=ρar/σ. If Bo>10, liquids will settle, but higher
values (Bo=50) are proposed as a conservative design criterion. On the other hand, combining
a small gravity gradient effect (Bo<10) with minimal surface-tension fluid-management
hardware may be more practical than either option by itself. Locating a propellant depot at
the end of a power tower structure might provide an adequate gravity-gradient contribution. If
higher gravity is desired, but without deploying the depot, another option is to deploy an
"anchor" mass on a tether, as shown at right.

Many nominally "zero-gee" operations such as electrophoresis may actually be compatible
with useful levels of gravity (i.e., useful for propellant settling, simplifying hygiene activities,
keeping objects in place at work stations, etc.). This needs to be studied in detail to see what
activities are truly compatible.

REFERENCES 1. D. Arnold, "General Equations of Motion," Appendix A of Investigation of Electrodynamic
    Stabilization and Control of Long Orbiting Tethers, Interim  Report for Sep 1979—Feb 1981,
    Smithsonian Astrophysical Observatory., March 1981.
2. K. R Kroll, "Tethered Propellant Resupply Technique for Space Stations," IAF-84-442,
    presented at the 35th LAF Congress, Lausanne Switzerland, 1984.
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5.4.2 Dumbbell Libration in Circular Orbit

KEY POINTS Libration periods are independent of length, but increase at large amplitude. Out-of-plane
libration can be driven by weak forces that have a 2n component. Tethers can go slack if
θmax>65° or φmax>60°.

The two figures at right show the forces on a dumbbell in circular orbit which has been
displaced from the vertical, and show the net torque on the dumbbell, returning it towards
the vertical. The main difference between the two cases is that the centrifugal force vectors
are radial in the in-plane case, and parallel in the out-of-plane case. This causes the net
force in the out-of-plane case to have a smaller axial component and a larger restoring
component, and is why φ-libration has a higher frequency than θ-libration.

Four aspects of this libration behavior deserve notice. First, the restoring forces grow with
the tether length, so libration frequencies are independent of the tether length. Thus tether
systems tend to librate “solidly”, like a dumbbell, rather than with the tether trying to swing
faster than the end-masses as can be seen in the chain of a child's swing. (This does not hold
for very long tethers, since the gravity gradient itself varies.) For low orbits around any of
the inner planets or the moon, libration periods are roughly an hour.

Second, tethered masses would be in free-fall except for the tether, so the sensed
acceleration is always along the tether (as shown by the stick-figures). Third, the axial force
can become negative, for φ>60° or near the ends of retrograde in-plane librations >65.9°.
This may cause problems unless the tether is released, or retrieved at an adequate rate to
prevent slackness.

NOTES And fourth, although θ-libration is not close to resonance with any significant driving force,
φ-libration is in resonance with several, such as out-of-plane components of aerodynamic
forces (in non-equatorial orbits that see different air density in northward and southward
passes) or electrodynamic forces (if tether currents varying at the orbital frequency are
used). The frequency droop at large amplitudes (shown at right) sets a finite limit to the
effects of weak but persistent forces, but this limit is quite high in most cases.

The equations given at right are for an essentially one-dimensional structure, with one
principal moment of inertia far smaller than the other two: A<<B<C. If A is comparable to
B & C, then the θ-restoring force shrinks with (B-A)/C, and the θ-libration frequency by
Sqrt((B-A)/C). Another limitation is that a coupling between φ & θ behavior (see ref. 1) has
been left out. This coupling is caused by the variation of end-mass altitudes twice in each φ-
libration. This induces Coriolis accelerations that affect θ. This coupling is often
unimportant, since 4n is far from resonance with 1.73n.

Libration is referenced to the local vertical, and when a dumbbell is in an eccentric orbit,
variations in the orbital rate cause librations which in turn exert periodic torques on an
initially uniformly-rotating object. In highly eccentric orbits this can soon induce
tumbling.2

REFERENCES 1. D. Arnold, "General Equations of Motion," Appendix A of Investigation of
Electrodynamic Stabilization and Control of Long Orbiting Tethers, Interim Report for Sep
1979—Feb 1981, Smithsonian Astrophysical. Observatory., March 1981.
2. P.A. Swan, "Dynamics & Control of Tethers in Elliptical Orbits," IAF-84-361, presented
at the 35th IAF Congress, Lausanne, Switzerland, October 1984.
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5.4.3 Tether Control Strategies

KEY POINTS Open-loop control is adequate for deployment; full retrieval requires feedback Tension laws
can control θ & φ-libration plus tether oscillations. Many other options exist for libration,
oscillation, & final retrieval control.

The table at right shows half a dozen distinct ways in which one or more aspects of tethered
system behavior can be controlled. In general, anything which can affect system behavior
(and possibly cause control problems) can be part of the solution, if it itself can be
controlled without introducing other problems.

Thus, for example, stiff tethers have sometimes been considered undesirable, because the
stiffness competes with the weak gravity-gradient forces near the end of retrieval.
However, if the final section of tether is stiff AND nearly straight when stress-free (rather
than pig-tail shaped), then "springy beam" control laws using a steerable boom tip might
supplement or replace other laws near the end of retrieval. A movable boom has much the
same effect as a stiff tether & steerable boom tip, since it allows the force vector to be
adjusted.

NOTES The basic concepts behind tension-control laws are shown at right. Libration damping is
done by paying out tether when the tension is greater than usual and retrieving it at other
times. This absorbs energy from the libration. As shown on the previous page, in-plane
libration causes large variations in tension (due to the Coriolis effect), so “yoyo”
maneuvers can damp in-plane librations quickly. Such yoyo maneuvers can be superimposed
on deployment and retrieval, to allow large length changes (>4:1) plus large in-plane
libration damping (or initiation) in less than one orbit, as proposed by Swet.1

Retrieval laws developed for the TSS require more time than Ref. 1, because they also
include damping of out-of-plane libration built up during station keeping. Rupp developed
the first TSS control law in 1975;2 much of the work since then is reviewed in (3). Recent
TSS control concepts combine tension and thrust control laws, with pure tension control
serving as a backup in case of thruster failure.4 Axial thrusters raise tether tension when the
tether is short, while others control yaw & damp out-of-plane libration to allow faster
retrieval.

A novel concept which in essence eliminates the final low-tension phase of retrieval is to
have the end mass climb up the tether.5  Since the tether itself remains deployed, its
contribution to gravity-gradient forces and stabilization remains. The practicality of this
will vary with the application.

REFERENCES 1. C. J. Swet, "Method for Deploying and Stabilizing Orbiting Structures",U.S. Patent
 #3,532,298, October 6, 1970.
2. C. C. Rupp, A Tether Tension Control Law for Tether Subsatellites Deployed Along
Local Vertical, NASA TM X-64963, MSFC, September 1, 1975.
3. V. J. Modi, Geng Chang-Fu, A.R Misra, and Da Ming Xu, "On the Control of the Space
 Shuttle Based Tethered Systems," Acta Astronautica, Vol. 9, No. 6-7, pp. 437-443, 1982.
4. A. K. Banerjee and T.R. Kane, "Tethered Satellite Retrieval with Thruster Augmented
Control," AIAA 82-1-21, presented at the AIAA/AAS Astrodynamics Conference, San
 Diego, Calif., 1982.
5. T. R. Kane, "A New Method for the Retrieval of the Shuttle-Based Tethered Satellite," J.
of the Astronaut. Sci., Vol 32, No. 3, July-Sept. 1984.
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5.4.4 Momentum Transfer Without Release

KEY POINTS Tethers merely redistribute angular momentum; they do not create it. Changes in tether
length, libration, and spin all redistribute momentum. Momentum transfer out-of-plane or
in deep space is possible but awkward.

The two figures at right show two different tether deployment (and retrieval) techniques. In
both cases, the initial deployment (which is not shown) is done with RCS burns or a long
boom. In the case at left, the tether is paid out under tension slightly less than the
equilibrium tension level for that tether length. The tether is slightly tilted away from the
vertical during deployment, and librates slightly after deployment is complete.

In the other case, after the initial near-vertical separation (to about 2% of the full tether
length), the two end masses are allowed to drift apart in near-free-fall, with very low but
controlled tension on the tether. Just under one orbit later, the tether is almost all deployed
and the range rate decreases to a minimum (due to orbital mechanics). RCS burns or tether
braking are used to cushion the end of deployment and prevent end mass recoil. Then the
tether system begins a large-amplitude prograde swing towards the vertical.

NOTES In both cases, the angular momentum transferred from one mass to the other is simply, as
stated in the box, the integral over time of the radius times the horizontal component of
tether tension. In one case, transfer occurs mainly during deployment; in the other, mainly
during the libration after deployment. In each case, momentum transfer is greatest when
the tether is vertical, since the horizontal component of tether tension changes sign then.

An intermediate strategy—deployment under moderate tension—has also been investigated.
However, this technique results in very high deployment velocities and large rotating
masses. It also requires powerful brakes and a more massive tether than required with the
other two techniques.

As discussed under Tether Control Strategies, changing a tether's length in resonance with
variations in tether tension allows pumping or damping of libration or even spin. Due to
Coriolis forces, in-plane libration and spin cause far larger tension variations than out-of-
plane libration or spin, so in-plane behavior is far easier to adjust than out-of-plane
behavior. Neglecting any parasitic losses in tether hysteresis & the reel motor, the net
energy needed to induce a given libration or spin is simply the system's spin kinetic energy
relative to the local vertical, when the system passes through the vertical.

Two momentum transfer techniques which appear applicable for in-plane, out-of-plane, or
deep-space use are shown at right. The winching operation can use lighter tethers than
other tethered-momentum-transfer techniques, but requires a very powerful deployer
motor. The tangential ∆V simply prevents a collision.

The spin-up operation (proposed by Harris Mayer) is similar to the winching operation. It
uses a larger tangential ∆V, a tether with straight and tapered sections, and a small motor.
Retrieval speeds up the spin by a factor of 1/L2. Surprisingly, the long tapered section of
tether can be less than half as massive as the short straight section that remains deployed
after spin-up.

REFERENCES 1. J. Tschirgi, "Tether-Deployed SSUS-A, Report on NASA Contract NAS8-32842,
McDonnell Douglas, April 1984.
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5.4.5 Orbit Transfer by Release or Capture

KEY POINTS The achievable orbit change scales with the tether length (as long as ∆r<< r). Retrograde-
libration releases are inefficient, but allow concentric orbits. Apogee & perigee boosts have
different values in different applications. Tethered capture can be seen as a time-reversal of
a tether release operation.

The figures to the right show the size of the orbit changes caused by various tether
operations. When released from a vertical tether, the end masses are obviously one tether
length apart in altitude. The altitude difference 1/2 orbit later, ∆rπ, varies with the
operation but is usually far larger. The linear relationship shown becomes inaccurate when
∆r approaches r. Tethered plane changes are generally limited to a few degrees and are not
covered here.

Tether release leaves the center-of-mass radius at each phase angle roughly unchanged: if
the upper mass is heavier, then it will rise less than the lower mass falls, and vice-versa.
Note that the libration amplitude, θmax, is taken as positive during prograde libration and
negative during retrograde libration. Hence retrograde libration results in ∆r < 7L. In
particular, the pre-release & post-release orbits will all be concentric if θmax = -60°. But
since methods of causing -60° librations usually involve +60° librations (which allow much
larger boosts by the same tether), prograde releases may usually be preferable unless
concentric orbits are needed or other constraints enter in.

NOTES The relative tether length, mass, peak tension, and energy absorbed by the deployer brake
during deployment as a function of (prograde) libration angle are all shown in the plot at
right. Libration has a large effect on brake energy. This may be important when retrieval of
a long tether is required, after release of a payload or after tethered-capture of a free-flying
payload.

The double boost-to-escape operation at right was proposed by A. Cutler. It is shown simply
as an example that even though momentum transfer is strictly a "zero sum game", a
tethered release operation can be a “WIN-win game” (a large win & a small one). The small
win on the deboost-end of the tether is due to the reduced gravity losses 1/2 orbit after
release, which more than compensate for the deboost itself. Another example is that
deboosting the shuttle from a space station can reduce both STS-deboost & station-reboost
requirements.

Rendezvous of a spacecraft with the end of a tether may appear ambitious, but with precise
relative-navigation data from GPS (the Global Positioning System) it may not be difficulty
The relative trajectories required are simply a time-reversal of relative trajectories that
occur after tether release. Approach to a hanging-tether rendezvous is shown at right.
Prompt capture is needed with this technique: if capture is not achieved within a few
minutes, one should shift to normal free-fall techniques. Tethered capture has large benefits
in safety (remoteness) and operations (no plume impingement; large fuel savings). The
main hazard is collision, due to undetected navigation or tether failure.

REFERENCES 1. G. Colombo, "Orbital Transfer & Release of Tethered Payloads," SAO report on NASA
 Contract NAS8-33691, March 1983.
2. W.D. Kelly, "Delivery and Disposal of a Space Shuttle External Tank to Low Earth
Orbit," J. of the Astronaut. Sci., Vol. 32, No. 3, July-Sept 1984.
3. J.A. Carroll, "Tether-Mediated Rendezvous," report to Martin Marietta on Task 3 of
contract RH3-393855, March 1984.
4. J.A. Carroll, "Tether Applications in Space Transportation, IAF 84-438, at the 35th IAF
 Congress, Oct 1984. To be published in ACTA ASTRONAUTICA.
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5.4.6 Energy and Angular Momentum Balance

KEY POINTS Tether operations cause higher-order repartitions of energy & angular momentum. First-
order approximations that neglect these effects may cause large errors. Extremely long
systems have strange properties such as positive orbital energy.

The question and answer at right are deceptively simple. The extent to which this is so, and
the bizarre effects which occur in extreme cases, can be seen in the 3 graphs at right. At
top, deploying & retrieving two masses on a very long massless tether changes not only the
top & bottom orbital radii but also that of the CM. In addition, the free-fall location drops
below the CM. Other key parameter changes under the same conditions are plotted
underneath.

Note that when the tether length exceeds about 30% of the original orbital radius, the entire
system lies below the original altitude. Also, at a radius ratio near 1.95:1, the maximum
tether length compatible with a circular orbit is reached. At greater lengths (and the initial
amount of angular momentum), no circular orbit is possible at any altitude.

Tether retrieval at the maximum-length point can cause the system to either rise or drop,
depending on the system state at that time. If it continues to drop, there is a rapid rise in
tether tension, and the total work done by the deployer quickly becomes positive. This
energy input eventually becomes large enough (at 2.89:1) to even make the total system
energy positive. The system is unstable beyond this point: any small disturbance will grow
and can cause the tether system to escape from the body it was orbiting. (See ref. 2.)

NOTES
The case shown is rather extreme: except for orbits around small bodies such as asteroids,
tethers either will be far shorter than the orbital radius, or will greatly outweigh the end
masses. Either change greatly reduces the size of the effects shown. The effects on arbitrary
structures can be calculated using the equations listed at right, which are based on a
generalization of the concept of "moments" of the vertical mass distribution. Changes in
tether length or mass distribution leave h unchanged, so other parameters (including rcm, n,
and E) must change. (For short tethers, the changes scale roughly with the square of the
system's radius of gyration.) In many cases different conditions are most easily compared
by first finding the orbital radius that the system would have if its length were reduced to 0,
rLt = 0.

The mechanism that repartitions energy and angular momentum is that length changes
cause temporary system displacements from the vertical. This causes both torques and net
tangential forces on the system, which can be seen by calculating the exact net forces and
couples for a non-vertical dumbbell. The same effect occurs on a periodic basis with
librating dumbbells, causing the orbital trajectory to depart slightly from an elliptical shape.

Other topics which are beyond the scope of this guidebook but whose existence should be
noted are: eccentricity changes due to deployment, orbit changes due to resonant spin/orbit
coupling, and effects of 2- & 3-dimensional structures.

REFERENCES 1. G. Colombo, M. Grossi, D. Arnold, & M. Martinez-Sanchez, "Orbital Transfer and
Release of Tethered Payloads," continuation of NAS8-33691, final report for the period
Sep 1979—Feb 1983, Smithsonian Astrophysical Observatory, March 1983. (In particular,
see the table  on page 21.)
2. D. Arnold, "Study of an Orbiting Tethered Dumbbell System Having Positive Orbital
 Energy," addendum to final report on NAS8-35497, SAO, Feb 1985.
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5.5 Tether Material Consideration
5.5.1 Tether Strength and Mass
KEY POINTS Tether strength/weight ratio constrains performance in ambitious operations. Required

tether mass is easily derivable from deltaV and payload mass.

Usable specific strength can be expressed in various ways. Three ways are shown at right. Vc,
Lc, and L1g  are here defined in terms of a typical design stress (new/m2) rather than the
(higher) ultimate stress. Including the safety factor here streamlines the subsequent
performance calculationsv Higher safety factors are needed with non-metals than with
metals since non-metals are often more variable in their properties, brittle, abrasion-
sensitive, and/or creep-sensitive. A safety factor of 4 (based on short-term fiber strength) is
typical for Kevlar, but the most appropriate safety factor will vary with the applicatiol;

The "characteristic velocity," Vc, is the most useful parameter in tetherboost calculations,
because the tether mass can be calculated directly from ∆V/Vc, independently of the orbit,
and nearly independently of the operation. The table at the bottom, which lists
tether/rocket combinations that have the lowest lifesycle mass requirements, holds
whenever kVc=1 km/sec & Isp=350 sec.

The characteristic length Lc is useful in hanging-tether calculations. It varies with the
orbital rate n. (The simple calculation given assumes L<<r; if this is not true, l/r effects
enter in, and calculations such as those used in refs 3-5 must be used.) The safe 1-gee length
L1g  is mainly useful in terrestrial applications, but is included since specific strength is often
quoted this way. (Note that Vc and Lc vary with Sqrt(strength), and L1g  directly with
strength).

NOTES The specific modulus is of interest because it determines the speed of sound in the tether
(C=the speed of longitudinal waves), the strain under design load (∆L/L={Vc

2/C}2), & the
recoil speed after failure under design load (= Vc

2/C).

Tether mass calculations are best done by considering each end of the tether separately. If
Mpl>>Mp2 , then Mt1 can be neglected in preliminary calculations.

Du Pont's Kevlar is the highest-specifiestrength fiber commercially available. Current RND
efforts on high-performance polymers indicate that polyester can exhibit nearly twice the
strength of Kevlar.2 Two fiber producers have already announced plans to produce
polymers with twice the specific strength of Kevlar.

In the long run, the potential may be greater with inorganic fibers like SiC & graphite. Refs.
3-5 focus on the requirements of "space elevators." They discuss laboratory tests of single-
crystal fibers and suggest that 10-fold improvements in specific strength (or 3-fold in Vc &
Lc) are conceivable.

REFERENCES 1. “Characteristics and Uses of Kevlar 49 Aramid High Modulus Organic Fiber” available
from Du Pont's Textile Fibers Department, 1978.
2. G. Graff, “Superstrong Plastics Challenge Metals,” High Technology magazine, February
 1985, pp. 62-63.
3  J. Isaacs, H. Bradner, G. Backus, and A.Vine, "Satellite Elongation into a True
"Skyhook"; a letter to Science, Vol. 151, pp. 682-683, Feb 11, 1966.
4. J. Pearson, "The Orbital Tower: a Spacecraft Launcher Using the Earth's Rotational
Energy," Acta Astronautica, Vol.2, pp. 785-799, Pergamon, 1975.
5. H. Moravec, "A Non-Synchronous Orbital Skyhook," J. of the Astronautical Sciences,
 Vol. YXV, No. 4, pp. 307-322, Oct-Dec 1977.
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5.5.2 Tether Impact Hazards
KEY POINTS Micrometeoroids can sever thin tethers & damage tether protection/insulation. Orbiting

debris (or other tethers) can sever tethers of any diameter. Debris could impact an Earth-
based "Space Elevator" over once per year.

Sporadic micrometeoroids are usually assumed to have an typical density of about .5 and a
typical impact velocity in LEO of approximately 20 km/sec.l At impact speeds above the
speed of sound, solids become compressible and the impact shock wave has effects like
those of an explosion. For this reason, the risk curve assumes that if the EDGE of an
adequately large meteoroid comes close enough to the center of the tether (within 45° or
.35 Dt), failure will result.

Experiments done by Martin Marietta on TSS candidate materials have used glass projectiles
fired at 6.5 km/sec, below the (axial) speed of sound in Kevlar. Two damaged tethers from
those tests are shown at right. The scaling law used (ρ0.5V0.67) indicates that this is
representative of orbital conditions, but that law (used for impacts on sheet metal) may not
apply to braided fibers.

For tethers much thicker than 10 mm or so (depending on altitude), the risk does not go
down much as D t increases, because even though the micrometeoroid risk still decreases, the
debris risk (which INCREASES slightly with Dt) begins to dominate. As with
micrometeoroids, the tether is assumed to fail if any part of the debris passes within 0.35 Dt

of the center of the tether.

NOTES The debris risk at a given altitude varies with the total debris width at that altitude. This was
estimated from 1983 CLASSY radar cross-section (RCS) data, by simply assuming that W =
Sqrt(RCS) and summing Sqrt(RCS) over all tracked objects in LEO.6 This underestimates W
for objects with appendages, and over-estimates it for non-librating elongated objects
without appendages.

CLASSY RCS data are expected to be accurate for RCS > 7 m2. The 700 objects with RCS >
7 m2 account for 3 km of the total 5 km width, so errors with smaller objects are not
critical. Small untracked objects may not add greatly to the total risk: 40,000 objects
averaging 2 cm wide would increase the risk to a l-cm tether by only 20%. W was assumed
independent of altitude, so the distribution of risk with altitude could be estimated by simply
scaling Figure 1 from Ref. 4.

As shown at right, debris impact with a space elevator could be expected more than once
per year at current debris populations. The relative density at 0° latitude was estimated
from data on pp. 162-163 of ref. 6.

Similar calculations can be made for two tethers in different orbits at the same altitude. If at
least one is spinning or widely-librating, the mutual risks can exceed 0.1 cut/km.yr. This
makes "tether traffic control" essential.

REFERENCES 1. Meteoroid Environment Model—1969 [Near Earth to Lunar Surface], NASA SP-8013,
    March 1969.
2. Meteoroid Environment Model—1970 [Interplanetary and Planetary], NASA SP-8038,
    October 1970.
3. Meteoroid Damage Assessment, NASA SP-8042, May 1970. (Shows impact effects)
4. D. J. Kessler, "Sources of Orbital Debris and the Projected Environment for Future
    Spacecraft", in J. of Spacecraft & Rockets, Vol 18 #4, Jul-Aug 1981.
5. D. J. Kessler, Orbital Debris Environment for Space Station, JSC-20001, 1984.
6. CLASSY Satellite Catalog Compilations as of 1 Jan 1983, NORAD/J5YS, 1983.
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5.6 Electrodynamic Tethers
5.6.1 Interactions with Earth's Magnetic Field and Plasma
KEY POINTS Tether (& other) resistance can limit the output of electrodynamic tethers. Electron

collection methods & effectiveness are important—and uncertain.

Since the publication of ref. l, 20 years ago, electrodynamic tether proposals and concepts
have been a frequent source of controversy, mainly in these areas:

1. What plasma instabilities can be excited by the current?
2. What is the current capacity of the plasma return loop?
3. What is the best way to collect electrons from the plasma?

The first Tethered Satellite mission may do much to answer these questions. The discussion
below and graphics at right merely seek to introduce them.

The current flowing through an electrodynamic tether is returned in the surrounding plasma.
This involves electron emission, conduction along geomagnetic field lines down to the
lower ionosphere, cross-field conduction by collision with neutral atoms, and return along
other field lines.

The tether current causes a force on the tether (and on the field) perpendicular to both the
field and the tether (horizontal, if the tether is vertical). Motion of the tether through the
geomagnetic field causes an EMF in the tether. This allows the tether to act as a generator,
motor, or self-powered ultra-low-frequency broadcast antenna.2 The motion also causes
each region of plasma to experience only a short pulse of current, much as in a commutated
motor.

NOTES Based on experience with charge neutralization of spacecraft in high orbit, it has been
proposed that electrons be collected by emitting a neutral plasma from the end of the
tether, to allow local cross-field conduction.3 In GEO, the geomagnetic field traps a plasma
in the vicinity of the spacecraft, and "escape" along field lines may not affect its utility.
This may also hold in high-inclination orbits in LEO. But in low inclinations in LEO, any
emitted plasma might be promptly wiped away by the rapid motion across field lines.

A passive collector such as a balloon has high aerodynamic drag, but a end-on sail can have
an order of magnitude less drag. The electron-collection sketch at bottom right is based on
a preliminary analysis by W. Thompson.5 This analysis suggests that a current moderately
higher than the electron thermal current ( =Ne * ~200 km/sec) might be collected on a
surface normal to the field. This is because collecting electrons requires that most ions be
reflected away from the collection region as it moves forward. This pre-heats and densifies
the plasma ahead of the collector. The voltage required for collection is just the voltage
needed to repel most of the ions, about 12 V.

REFERENCES 1. S. D. Drell, H. M. Foley, & M. A. Ruderman, "Drag and Propulsion of Large Satellites in
the Ionosphere: An Alfven Propulsion Engine in Space," J. Of Geophys. Res., Vol. 70, No.
13, pp. 3131-3145, July 1965.
2. M. Grossi, "A ULF Dipole Antenna on a Spaceborne Platform of the PPEPL Class,"
Report on NASA Contract NAS8-28203, May 1973.
3. R. D. Moore, "The Geomagnetic Thruster—A High Performance "Alfven Wave"
Propulsion System Utilizing Plasma Contacts," ALGA Paper No. 66-257.
4. S. T. Wu, ed., University of Alabama at Huntsville/NASA Workshop on The Uses of a
 Tethered Satellite System, Summary Papers, Huntsville AL,  1978. See papers by M. Grossi
  et al, R. Williamson et al., and N. Stone.
5. W. Thompson, "Electrodynamic Properties of a Conducting Tether," Final Report to
Martin Marietta Corp. on Task 4 of Contract RH3-393855, Dec. 1983.
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5.6.2 Electrodynamic Orbit Changes

KEY POINTS Electrodynamic tether use will affect the orbit—whether desired or not. Station keeping
and/or large orbit changes without propellant use are possible.

The offset dipole approximation shown at right is only a first approximation to the
geomagnetic field: harmonic analyses of the field give higher-order coefficients up to 20%
as large as the fundamental term. Ref. 1 contains computerized models suitable for use in
detailed electrodynamic studies.

The geomagnetic field weakens rapidly as one moves into higher orbits, and becomes
seriously distorted by solar wind pressure beyond GEO. However, ohmic losses in a tether
are already significant in LEO, so electrodynamic tethers are mainly useful in low orbits
where such distortions are not significant.

As the earth rotates, the geomagnetic field generated within it rotates also, and the
geomagnetic radius and latitude of a point in inertial space vary over the day. If a
maneuvering strategy which repeats itself each orbit is used (necessary unless the spacecraft
has large diurnal power storage capacity), then the average effect, as shown at right, will be
a due east thrust vector.

Variations in geomagnetic latitude (and thus in Bh) cancel out variations in the component
of flight motion perpendicular to the field, so these variations do not cause large voltage
variations in high-inclination orbits. (Note that the relevant motion is motion relative to a
rotating earth.) Out-of-plane libration, variations in geomagnetic radius, and diurnal
variation of the "geomagnetic inclination" of an orbit can all cause voltage variations. Peak
EMFs (which drive hardware design) may approach 400 V/km.

NOTES However these variations need not affect the thrust much if a spacecraft has a variable-
voltage power supply: neglecting variations in parasitic power, constant power investment
in a circular orbit has to give constant in-plane thrust. The out-of-plane thrust is provided
"free" (whether desired or not). Average voltage & thrust equations for vertical tethers are
shown at right.

The table shows how to change all six orbital elements separately or together. Other
strategies are also possible. Their effects can be calculated from the integrals listed. For
orbits within 11° of polar or equatorial, diurnally-varying strategies become more desirable.
Computing their effects requires using the varying geomagnetic inclination instead of i (&
moving it inside the integral). Note that the “DC” orbit-boosting strategy also affects i.
This can be canceled out by superimposing a -2 Cos(2φ) current on the DC current.

As discussed under Electrodynamic Libration Control Issues, eccentricity and apside changes
can strongly stimulate φ-libration unless the spacecraft center of mass is near the center of
the tether. Other maneuvers should not do this, but this should be checked using high-
fidelity geomagnetic field models.

REFERENCES 1. E. G. Stassinopoulos & G. D. Mead, ALLMAG, GDALMG, LINMA:Computer Programs 
for Geomagnetic Field & Field-Line Calculations, Feb. 1972, NASA Goddard.
2. R. D. Moore, "The Geomagnetic Thruster—A High Performance "Alfven Wave" 
Propulsion System Utilizing Plasma Contacts," AIAA Paper No. 66-257.
3. H. Alfven, "Spacecraft Propulsion; New Methods," Science, Vol. 176, 14 Apr 1972, pp.
 167-168.
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5.6.3 Tether Shape and Libration Control

KEY POINTS Properly controlled AC components can be used to control θ and φ-libration. Solar-energy
storage and e or ω changes strongly stimulate φ-libration. AC currents other than 1 &
3/orbit should not affect φ-libration much.

The maneuvering strategies on the previous page have assumed that electrodynamic tethers
will stay vertical. However, as shown at right, the distributed force on the tether causes
bowing, and that bowing is what allows net momentum transfer to the attached masses.
Note that net momentum can be transferred to the system even if the wire is bowed the
wrong way (as when the current is suddenly reversed); momentum transferred to the wire
gets to the masses later.

This figure also illustrates two other issues:
1. Bowing of the tether causes it to cross fewer field lines.
2. Unequal end masses and uniform forces cause overall torques & tilting.

The bowing causes the tether to provide less thrust while dissipating the same parasitic
power. The net force on the system is the same as if the tether were straight but in a
slightly weaker magnetic field.

The torque on the system causes it to tilt away from the vertical, until the torque is
balanced by gravity-gradient restoring torques. For a given system mass and power input,
disturbing torques vary with L and restoring torques with L2, so longer systems can tolerate
higher power. The mass distribution also affects power-handling capability, as seen in the
sequence at top right.

NOTES Modulating the tether current modulates any electrodynamic torques. Current modulation at
1.73 n can be used to control in-plane libration. Out-of-plane torques can also be
modulated, but another control logic is required. This is because the once-per-orbit variation
in out-of-plane thrust direction makes a current with frequency F (in cycles per orbit) cause
out-of-plane forces and torques with frequencies of F-1 and F+1, as shown in the Fourier
analysis at bottom right. Hence φ libration control (F=2) requires properly phased F=1 or
F=3 currents. Higher frequencies can damp odd harmonics of any tether bowing oscillations.
Control of both in- & out-of-plane oscillations may be possible since they have the same
frequencies and thus require different currents.

Applications that require significant F=1 components for other reasons can cause problems.
Four such strategies are shown at right. Sin & Cos controls allow adjustment of e or ω. The
two "Sign of ..." laws allow constant power storage over 2/3 of each orbit and recovery the
rest of the orbit. These laws would be useful for storing photovoltaic output for use during
dark periods.

These strategies drive out-of-plane libration (unless the center of mass is at the center of
the tether). The libration frequency decreases at large amplitudes, so if the system is not
driven too strongly, it should settle into a finite-but-large-amplitude phase-locked loop.
This may be unacceptable in some applications, due to resulting variations in gravity or
tether EMF. In some cases, such as eccentricity changes, adding a F=3 component might
cancel the undesired effect of an F=1 current while keeping the desired effect.

REFERENCE 1. G. Colombo, M. Grossi, M. Dobrowolny, and D. Arnold, Investigation of Electrodynamic
Stabilization & Control of Long Orbiting Tethers, Interim Report on Contract NAS8-
33691, March 1981, Smithsonian Astrophysical Observatory.
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6.1 Overview

Some scientific applications of tethers have been presented already in other sections
of this handbook (see section 3 and 4). In this section we will illustrate the role that tethers
can play in the future advancement of space science.We hope that this section will grow in
the next editions.

According to the Non-advocate Tether Systems Applications Review (1993), chaired
by Dr. M. Greenfield (see “contacts” Section),  “...Space tether technology has the near-term
potential to meet a broad range of science and technological aspects. The unique capabilities
of tether technology enable the aquisition of science otherwise not achievable and can
provide concepts for space applications...”. Copies of report can be obtained either from the
chairman or from the editors.

Space research with tethers has emphasized two particular applications: 1) Reaching
otherwise unaccessible flight regions with downward deployed tethers; 2) Active
experimentation with the surrounding plasma.

A good example of the effort carried on by the scientific community is the the
workshop held in Ann Harbor, Michigan in July 1994. Copies of the Executive Summary can
be obtained by Prof. B. Gilchrist (see “contacts” Section). The focus of this workshop was on
how Ionospheric-Thermospheric-Mesospheric (ITM) Science can benefit from spaceborne
tethers. NASA’s sponsored TIMED mission promises to add substantially to the knowledge of
the global response of the ITM region.

A multi -mass tether system could add many “in-situ” data on the effects of small
scale spatial structures and its interactions (see “Applications” Section),. As the reports
quotes “... Just as the advancement of remote sensing technology enabled the TIMED
mission to be conceived, the ability of tethered payloads in space with spatial separations
ranging for 1 Km to 100 km will enable a program of in-situ multiprobe diagnostics of the
ITM region to be undertaken.”. The workshop identified the following areas that would
benefit from tethered spacecraft:

• Magnetospheric-Ionospheric coupling: Energy dissipation and configuration of three
dimensional high latitude current systems.

 
• Effects of plasma structureson large and small scale electrodynamics.
 
• Ion-neutral momentum and energyexchange at different spatial scales.
 
• Momentum and energy transport processes by gravity waves.
 
• Thermospheric cooling (energy loss) through radiative emissions.
 
• The role of electromagnetic and electrostatic waves in energy transfer processes.
 
• The generation and flow of electrical currents in the ITM region
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A task group chaired by prof. Heelis followed up the objectives laid out by the
Michigan Workshop. The key science questions to be answered from a series of “in-situ”
tether-aided observations in the lower thermosphere, highlighted significant advances as:

• Determination of the effective scales over which polarization electric fields are generated
and how they map along the magnetic field lines.

 
• Determination of the wind effectivness in producing polarization fields and driving field-

aligned currents.
 
• Identification of  the type winds responsible for conductivity variations and those

responsible for electric field generation.
 
• Assessment of gravity wave generators and of possible seed mechanism for F-region

plasma instabilities.
 
• Assessment of the relecvance of thermospheric cooling to global change and impovment

of prediction of the future physical characteristics in the thermosphere, mesosphere and
stratosphere.

 
• Identification of the response of the lower ionosphere-thermosphere to large scale

weather systems and transient phenomena associated with lightning.
 
 The measurements that could address the above questions are listed in the following table.
 
Parameter Dynamic Range Accuracy Resolution Sample Interval
Neutral
Atmospheric
comp.

105-1011  cm -3
<+ 10% and
smaller for
major species

∆M/M =1 at
M=30
5%

<4 Km

Neutral Wind
Vector

-500 to 500 m/s + 10% 1 m/s <4 Km

Ion
Composition

1 to 105 cm -3 + 10% ∆M/M =1
at M=16
  1%

<4 Km Comp.
<500 m Total

Ion Drift
Velocity vector
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Ion/Electron/
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mV/m
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<4 Km

Current Density/
Magnetic field
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<1 Km

FUV Imaging 10 R to 50 KR  0.5% N/A
<1 Km

Energetic
Particles

10 eV to 30 KeV
107 to 1010

 cm-2 s-1 sr--1 eV-1

+ 5% N/A <4 Km
30 deg pitch
angle

IR Emissions
13-17.5 µm

4.17-6.25 µm

2x10-9 to 5x10-8

W cm-2 sr--1

2x10-8 to 2x10-7

10%

5%

∆R/R   3%

∆R/R  0.4%

120 Km

120 Km
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 More information on the instrumentation and the engineering aspects of this mission can be
found in the section “Proposed Missions” (ATM Mission). A report entitled ”Tether-based
Investigation of the Ionosphere and Lower Thermosphere (TIILT)” has been prepared to
present the scientific rationale behind this type of mission as well as the measurements and
instrumentation. Copies of this report can be obtained by Prof. Heelis.

There are other missions, however, that would benefit from tethers . For example,
AKTIVE spacecraft, launched by the former USSR in 1989, aimed at investigating VLF
radiowave propagation and wave-particle interaction in the magnetosphere using a 10 KW
VLF transmitter with a large loop antenna (20 m diameter). Electromagnetic effects
occurring near the spacecraft were monitored by a coorbiting subsatellite, as shown in figure
6.1.

Figure 6.1 Aktive spacecraft and subsatellite
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The primary objectives of the AKTIVE program were as follows:

1) Radiation Properties of the loop antenna.
2) Spatial  structure of the electromagnetic fields in the near zone (< 10 km).
3) Nonlinear effects in the near zone
4) Propagation of waves in the whistler mode, and their reflection from the 

ionosphere
5) Non-linear effects in whistler wave propagation
6) Precipitation of charged particles form the radiation belts due to interaction with 

VLF waves.
7) VLF emissions triggered from the orbiting AKTIVE transmitter.
8) Comparison with emissions triggered by ground based VLF transmitters.

Alas, AKTIVE encountered several technical problems and the program was
terminated. Nevertheless, when the em-radiating properties of spaceborne tethers will be
finally assessed, some of the above objectives , namely 4, 5 , 7 and 8 will greatly benefit. No
further work has been done, however, in this direction. Some TSS investigations are currently
addressing these questions.

6.2 Synergy

Some years ago, Lockheed-Martin, then Martin-Marietta, sponsored some studies to
look into the synergy of tethers with other space missions, namely AFE (Aeroassist Flight
Experiment), cancelled by NASA in 1991, and TIMED (Thermosphere-Ionosphere-
Mesosphere Energetic Dynamics). Prof. Hurlbut (see “Contacts” Section) performed the
study and the results are shown in tables 1 and 2, respectively.

AFE was a research “pathfinder” for a geosyncronous, lunar and planetary earth
return aerobraking spacecraft. Prof. Hurlbut indicated that a tethered system could
accomplish almost fifty percent of  AFE objectives by exploring a much greater altitude
range for a longer duration than AFE was supposed to fly.

The study on TIMED aimed at determinating which of its instruments could
potentially fly on a pathfinder type tethered spacecraft. Note that the study of
Lockheed-Martin on TIMED focused on one of its earliest configurations.
The major finding of this study was that a tethered spacecraft could possibly validate
instruments which were operated in the 130-140 Km altitude range.



192

Table 1. AFE VS. Tethered System

AFE Flight Experiment Tethered System Applicability
1.   Forebody-Aerothermal
Characterization Experiment
(FACE)

Heat-flux and skin temperature measurements
at all altitudes will provide thermal
accommodation coefficients and validations of
models/codes.

2.   Radiative Heating Experiment
(RHE)

Possibly applicable - Needs further study.

3.  Wall Catalysis Experiment
(WCE)

An extension of (1) to provide valuable
catalytic vs. low catalytic gas/surface
interaction data.

4.  Base Flow Heating Experiment
(BFHE)

Spherical afterbody data will differ from
aerobrake geometry but will be very valuable
with added Aerostabilizer instrument data.

5.   Afterbody Radiometry
Experiment  (ARE)

Possibly applicable - Needs further study.

6.   Alternate Thermal Protection
Materials  (ATPM)

Possibly applicable - Needs further study.

7.  Heat Shield Performance (HSP) Possibly applicable - Needs further  study.
8.   Pressure Distribution/Air Data
System    (PD/ADS)

Measurement of static/dynamic  pressures at
multiple satellite locations extremely valuable.

9.   Aerodynamic Performance
Experiment (APEX)

Satellite with Aerostabilizer will acquire
extremely important aero characterization data
over a wide altitude range.

10. Rarefield-Flow Aerodynamics
Measurement Experiment (RAME)
(RAME)

Measurements of momentum transfer
characteristics and aero parameters (CD, CL,
etc.) combined with (1) extremely valuable for
validation of existing predictive analytical
programs.

11. Plasma, Ion and Electron
Concentration Experiment (PIECE)

Possibly applicable - Needs further study.

12. Microwave Reflectometer
Ionization Sensor (MRIS)

Probably N/A

13. Aft Flow Ionization Sensor
(MRIS)

Probably N/A

14. Ion Mass Spectrometer
Experiment (IMSE)

Measurements of species and total density
extremely important for atmospheric
modeling.
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Table 2. TIMED - Tethered Pathfinder Synergy

Timed Flight Experiment Tethered System Pathfinder
1.  Fabry-Perot Interferometer Probably N/A - Requires more study.
2.  Neutral Mass Spectrometer Applicable for gas composition, temperatures

and transverse winds.
3.  Ion Mass Spectrometer Applicability although ion composition and

drift velocities of secondary importance.
4.   Langmuir Probe Applicable for measurement of electron

temperatures and ion/electron densities.
5.   Ion Drift Meter and Retarding
Potentiometer

Applicable for measurement of ion
temperatures, velocities and densities.

6.   UV Spectrometer Applicable for measurement of O3, NO
temperatures, Noctilucent clouds, aerosols, and
other minorconstituents.

7.    Imaging Photometer Possibly N/A - Requires more study.
8.    Triaxial Accelerometer Applicable as a high priority instrument.
9.    Energetic Particle Analyzer Probably N/A - Requires more study.
10.   Global UV Airglow Imager Probably N/A - Requires more study.
11.   Solar EUV Spectrometer/UV
Photometer

Probably N/A - Requires more study.

12.  Vector Magnetometer Applicable for magnetic field measurements
13.   Near Infrared Spectrometer Probably N/A - Requires more study.
14.   Electric Field Detector/Plasma
Wave Experiment

Probably N/A - Requires more study.

15.   Infrared Limb Sounder Probably N/A - Requires more study.
16.   Fast Electron Spectrometer Probably N/A - Requires more study.
17.   Energetic Particle Spectrometer Probably N/A - Requires more study.
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